Files
PyCNC/cnc/gmachine.py
2020-11-10 20:11:57 +00:00

501 lines
20 KiB
Python

from __future__ import division
import cnc.logging_config as logging_config
from cnc import hal
from cnc.pulses import *
from cnc.coordinates import *
from cnc.heater import *
from cnc.enums import *
from cnc.watchdog import *
class GMachineException(Exception):
""" Exceptions while processing gcode line.
"""
pass
class GMachine(object):
""" Main object which control and keep state of whole machine: steppers,
spindle, extruder etc
"""
AUTO_FAN_ON = AUTO_FAN_ON
def __init__(self):
""" Initialization.
"""
self._position = Coordinates(0.0, 0.0, 0.0, 0.0)
# init variables
self._velocity = 0
self._spindle_rpm = 0
self._local = None
self._convertCoordinates = 0
self._absoluteCoordinates = 0
self._plane = None
self._fan_state = False
self._pen_state = False
self._heaters = dict()
self.reset()
hal.init()
self.watchdog = HardwareWatchdog()
def release(self):
""" Free all resources.
"""
self._spindle(0)
for h in self._heaters:
self._heaters[h].stop()
self._fan(False)
hal.deinit()
def reset(self):
""" Reinitialize all program configurable thing.
"""
self._velocity = min(MAX_VELOCITY_MM_PER_MIN_X,
MAX_VELOCITY_MM_PER_MIN_Y,
MAX_VELOCITY_MM_PER_MIN_Z,
MAX_VELOCITY_MM_PER_MIN_E)
self._spindle_rpm = 1000
self._local = Coordinates(0.0, 0.0, 0.0, 0.0)
self._convertCoordinates = 1.0
self._absoluteCoordinates = True
self._plane = PLANE_XY
# noinspection PyMethodMayBeStatic
def _spindle(self, spindle_speed):
hal.join()
hal.spindle_control(100.0 * spindle_speed / SPINDLE_MAX_RPM)
def _fan(self, state):
hal.fan_control(state)
self._fan_state = state
def _pen(self, state):
hal.pen_control(state)
self._pen_state = state
def _heat(self, heater, temperature, wait):
# check if sensor is ok
if heater == HEATER_EXTRUDER:
measure = hal.get_extruder_temperature
control = hal.extruder_heater_control
coefficients = EXTRUDER_PID
elif heater == HEATER_BED:
measure = hal.get_bed_temperature
control = hal.bed_heater_control
coefficients = BED_PID
else:
raise GMachineException("unknown heater")
try:
measure()
except (IOError, OSError):
raise GMachineException("can not measure temperature")
if heater in self._heaters:
self._heaters[heater].stop()
del self._heaters[heater]
if temperature != 0:
if heater == HEATER_EXTRUDER and self.AUTO_FAN_ON:
self._fan(True)
self._heaters[heater] = Heater(temperature, coefficients, measure,
control)
if wait:
self._heaters[heater].wait()
def __check_delta(self, delta):
pos = self._position + delta
logging.debug("_check_delta : pos init = {} - delta = {} - pos = {}".format(self._position, delta, pos))
if not pos.is_in_aabb(Coordinates(0.0, 0.0, 0.0, 0.0),
Coordinates(TABLE_SIZE_X_MM, TABLE_SIZE_Y_MM,
TABLE_SIZE_Z_MM, 0)):
raise GMachineException("[CHECK DELTA] out of effective area")
# noinspection PyMethodMayBeStatic
def __check_velocity(self, max_velocity):
if max_velocity.x > MAX_VELOCITY_MM_PER_MIN_X \
or max_velocity.y > MAX_VELOCITY_MM_PER_MIN_Y \
or max_velocity.z > MAX_VELOCITY_MM_PER_MIN_Z \
or max_velocity.e > MAX_VELOCITY_MM_PER_MIN_E:
raise GMachineException("out of maximum speed")
def _move_linear(self, delta, velocity, safe_zero=False):
if not safe_zero:
delta = delta.round(round(1.0 / STEPPER_PULSES_PER_MM_X, 2),
round(1.0 / STEPPER_PULSES_PER_MM_Y, 2),
round(1.0 / STEPPER_PULSES_PER_MM_Z, 2),
round(1.0 / STEPPER_PULSES_PER_MM_E, 2))
if delta.is_zero():
return
self.__check_delta(delta)
gen = PulseGeneratorLinear(delta, velocity)
self.__check_velocity(gen.max_velocity())
hal.move(gen)
# save position
self._position = self._position + delta
@staticmethod
def __quarter(pa, pb):
if pa >= 0 and pb >= 0:
return 1
if pa < 0 and pb >= 0:
return 2
if pa < 0 and pb < 0:
return 3
if pa >= 0 and pb < 0:
return 4
def __adjust_circle(self, da, db, ra, rb, direction, pa, pb, ma, mb):
r = math.sqrt(ra * ra + rb * rb)
if r == 0:
raise GMachineException("circle radius is zero")
sq = self.__quarter(-ra, -rb)
if da == 0 and db == 0: # full circle
ea = da
eb = db
eq = 5 # mark as non-existing to check all
else:
if da - ra == 0:
ea = 0
else:
b = (db - rb) / (da - ra)
ea = math.copysign(math.sqrt(r * r / (1.0 + abs(b))), da - ra)
eb = math.copysign(math.sqrt(r * r - ea * ea), db - rb)
eq = self.__quarter(ea, eb)
ea += ra
eb += rb
# iterate coordinates quarters and check if we fit table
q = sq
pq = q
for _ in range(0, 4):
if direction == CW:
q -= 1
else:
q += 1
if q <= 0:
q = 4
elif q >= 5:
q = 1
if q == eq:
break
is_raise = False
if (pq == 1 and q == 4) or (pq == 4 and q == 1):
is_raise = (pa + ra + r > ma)
elif (pq == 1 and q == 2) or (pq == 2 and q == 1):
is_raise = (pb + rb + r > mb)
elif (pq == 2 and q == 3) or (pq == 3 and q == 2):
is_raise = (pa + ra - r < 0)
elif (pq == 3 and q == 4) or (pq == 4 and q == 3):
is_raise = (pb + rb - r < 0)
if is_raise:
raise GMachineException("[ADJUST CIRCLE] out of effective area")
pq = q
return ea, eb
def _move_circular(self, delta, radius, velocity, direction):
delta = delta.round(1.0 / STEPPER_PULSES_PER_MM_X,
1.0 / STEPPER_PULSES_PER_MM_Y,
1.0 / STEPPER_PULSES_PER_MM_Z,
1.0 / STEPPER_PULSES_PER_MM_E)
radius = radius.round(1.0 / STEPPER_PULSES_PER_MM_X,
1.0 / STEPPER_PULSES_PER_MM_Y,
1.0 / STEPPER_PULSES_PER_MM_Z,
1.0 / STEPPER_PULSES_PER_MM_E)
self.__check_delta(delta)
# get delta vector and put it on circle
circle_end = Coordinates(0, 0, 0, 0)
if self._plane == PLANE_XY:
circle_end.x, circle_end.y = \
self.__adjust_circle(delta.x, delta.y, radius.x, radius.y,
direction, self._position.x,
self._position.y, TABLE_SIZE_X_MM,
TABLE_SIZE_Y_MM)
circle_end.z = delta.z
elif self._plane == PLANE_YZ:
circle_end.y, circle_end.z = \
self.__adjust_circle(delta.y, delta.z, radius.y, radius.z,
direction, self._position.y,
self._position.z, TABLE_SIZE_Y_MM,
TABLE_SIZE_Z_MM)
circle_end.x = delta.x
elif self._plane == PLANE_ZX:
circle_end.z, circle_end.x = \
self.__adjust_circle(delta.z, delta.x, radius.z, radius.x,
direction, self._position.z,
self._position.x, TABLE_SIZE_Z_MM,
TABLE_SIZE_X_MM)
circle_end.y = delta.y
circle_end.e = delta.e
circle_end = circle_end.round(1.0 / STEPPER_PULSES_PER_MM_X,
1.0 / STEPPER_PULSES_PER_MM_Y,
1.0 / STEPPER_PULSES_PER_MM_Z,
1.0 / STEPPER_PULSES_PER_MM_E)
logging.info("Moving circularly {} {} {} with radius {}"
" and velocity {}".format(self._plane, circle_end,
direction, radius, velocity))
gen = PulseGeneratorCircular(circle_end, radius, self._plane,
direction, velocity)
self.__check_velocity(gen.max_velocity())
# if finish coords is not on circle, move some distance linearly
linear_delta = delta - circle_end
linear_gen = None
if not linear_delta.is_zero():
logging.info("Moving additionally {} to finish circle command".
format(linear_delta))
linear_gen = PulseGeneratorLinear(linear_delta, velocity)
self.__check_velocity(linear_gen.max_velocity())
# do movements
hal.move(gen)
if linear_gen is not None:
hal.move(linear_gen)
# save position
self._position = self._position + circle_end + linear_delta
def safe_zero(self, x=True, y=True, z=True):
""" Move head to zero position safely.
:param x: boolean, move X axis to zero
:param y: boolean, move Y axis to zero
:param z: boolean, move Z axis to zero
"""
logging.debug("[SAFE_ZERO] : X : {} - Y : {} - Z : {}".format(x,y,z))
if x and not y:
self._move_linear(Coordinates(-self._position.x, 0, 0, 0),
MAX_VELOCITY_MM_PER_MIN_X, True)
elif y and not x:
self._move_linear(Coordinates(0, -self._position.y, 0, 0),
MAX_VELOCITY_MM_PER_MIN_X, True)
elif x and y:
d = Coordinates(-self._position.x, -self._position.y, 0, 0)
logging.debug("[SAFE_ZERO] : d = {}".format(d))
self._move_linear(d, min(MAX_VELOCITY_MM_PER_MIN_X,
MAX_VELOCITY_MM_PER_MIN_Y),
True)
if z:
d = Coordinates(0, 0, -self._position.z, 0)
self._move_linear(d, MAX_VELOCITY_MM_PER_MIN_Z, True)
def position(self):
""" Return current machine position (after the latest command)
Note that hal might still be moving motors and in this case
function will block until motors stops.
This function for tests only.
:return current position.
"""
hal.join()
return self._position
def plane(self):
""" Return current plane for circular interpolation. This function for
tests only.
:return current plane.
"""
return self._plane
def fan_state(self):
""" Check if fan is on.
:return True if fan is on, False otherwise.
"""
return self._fan_state
def __get_target_temperature(self, heater):
if heater not in self._heaters:
return 0
return self._heaters[heater].target_temperature()
def extruder_target_temperature(self):
""" Return desired extruder temperature.
:return Temperature in Celsius, 0 if disabled.
"""
return self.__get_target_temperature(HEATER_EXTRUDER)
def bed_target_temperature(self):
""" Return desired bed temperature.
:return Temperature in Celsius, 0 if disabled.
"""
return self.__get_target_temperature(HEATER_BED)
def do_command(self, gcode):
""" Perform action.
:param gcode: GCode object which represent one gcode line
:return String if any answer require, None otherwise.
"""
if gcode is None:
return None
answer = None
logging.debug("got command " + str(gcode.params))
# read command
c = gcode.command()
if c is None and gcode.has_coordinates():
c = 'G1'
# read parameters
if self._absoluteCoordinates:
coord = gcode.coordinates(self._position - self._local,
self._convertCoordinates)
coord = coord + self._local
delta = coord - self._position
else:
delta = gcode.coordinates(Coordinates(0.0, 0.0, 0.0, 0.0),
self._convertCoordinates)
# coord = self._position + delta
velocity = gcode.get('F', self._velocity)
logging.debug("Velocity = {}".format(velocity))
radius = gcode.radius(Coordinates(0.0, 0.0, 0.0, 0.0),
self._convertCoordinates)
# check parameters
if velocity < MIN_VELOCITY_MM_PER_MIN and velocity > 1:
raise GMachineException("feed speed too low")
elif velocity == 1:
velocity = MIN_VELOCITY_MM_PER_MIN
# select command and run it
if c == 'G0': # rapid move
vl = max(MAX_VELOCITY_MM_PER_MIN_X,
MAX_VELOCITY_MM_PER_MIN_Y,
MAX_VELOCITY_MM_PER_MIN_Z,
MAX_VELOCITY_MM_PER_MIN_E)
l = delta.length()
if l > 0:
proportion = abs(delta) / l
if proportion.x > 0:
v = int(MAX_VELOCITY_MM_PER_MIN_X / proportion.x)
if v < vl:
vl = v
if proportion.y > 0:
v = int(MAX_VELOCITY_MM_PER_MIN_Y / proportion.y)
if v < vl:
vl = v
if proportion.z > 0:
v = int(MAX_VELOCITY_MM_PER_MIN_Z / proportion.z)
if v < vl:
vl = v
if proportion.e > 0:
v = int(MAX_VELOCITY_MM_PER_MIN_E / proportion.e)
if v < vl:
vl = v
self._move_linear(delta, vl)
elif c == 'G1': # linear interpolation
self._move_linear(delta, velocity)
elif c == 'G2': # circular interpolation, clockwise
self._move_circular(delta, radius, velocity, CW)
elif c == 'G3': # circular interpolation, counterclockwise
self._move_circular(delta, radius, velocity, CCW)
elif c == 'G4': # delay in s
if not gcode.has('P'):
raise GMachineException("P is not specified")
pause = gcode.get('P', 0)
if pause < 0:
raise GMachineException("bad delay")
hal.join()
time.sleep(pause / 1000)
elif c == 'G17': # XY plane select
self._plane = PLANE_XY
elif c == 'G18': # ZX plane select
self._plane = PLANE_ZX
elif c == 'G19': # YZ plane select
self._plane = PLANE_YZ
elif c == 'G20': # switch to inches
self._convertCoordinates = 25.4
elif c == 'G21': # switch to mm
self._convertCoordinates = 1.0
elif c == 'G28': # home
axises = gcode.has('X'), gcode.has('Y'), gcode.has('Z')
if axises == (False, False, False):
axises = True, True, True
self.safe_zero(*axises)
hal.join()
if not hal.calibrate(*axises):
raise GMachineException("failed to calibrate")
elif c == 'G53': # switch to machine coords
self._local = Coordinates(0.0, 0.0, 0.0, 0.0)
elif c == 'G90': # switch to absolute coords
self._absoluteCoordinates = True
elif c == 'G91': # switch to relative coords
self._absoluteCoordinates = False
elif c == 'G92': # switch to local coords
if gcode.has_coordinates():
self._local = self._position - gcode.coordinates(
Coordinates(self._position.x - self._local.x,
self._position.y - self._local.y,
self._position.z - self._local.z,
self._position.e - self._local.e),
self._convertCoordinates)
else:
self._local = self._position
elif c == 'M3': # spindle on
spindle_rpm = gcode.get('S', self._spindle_rpm)
if spindle_rpm < 0 or spindle_rpm > SPINDLE_MAX_RPM:
raise GMachineException("bad spindle speed")
self._spindle(spindle_rpm)
self._spindle_rpm = spindle_rpm
elif c == 'M5': # spindle off
self._spindle(0)
elif c == 'M2' or c == 'M30': # program finish, reset everything.
self.reset()
elif c == 'M84': # disable motors
hal.disable_steppers()
# extruder and bed heaters control
elif c == 'M104' or c == 'M109' or c == 'M140' or c == 'M190':
if c == 'M104' or c == 'M109':
heater = HEATER_EXTRUDER
elif c == 'M140' or c == 'M190':
heater = HEATER_BED
else:
raise Exception("Unexpected heater command")
wait = c == 'M109' or c == 'M190'
if not gcode.has("S"):
raise GMachineException("temperature is not specified")
t = gcode.get('S', 0)
if ((heater == HEATER_EXTRUDER and t > EXTRUDER_MAX_TEMPERATURE) or
(heater == HEATER_BED and t > BED_MAX_TEMPERATURE) or
t < MIN_TEMPERATURE) and t != 0:
raise GMachineException("bad temperature")
self._heat(heater, t, wait)
elif c == 'M105': # get temperature
try:
et = hal.get_extruder_temperature()
except (IOError, OSError):
et = None
try:
bt = hal.get_bed_temperature()
except (IOError, OSError):
bt = None
if et is None and bt is None:
raise GMachineException("can not measure temperature")
answer = "E:{} B:{}".format(et, bt)
elif c == 'M106': # fan control
if gcode.get('S', 1) != 0:
self._fan(True)
else:
self._fan(False)
elif c == 'M107': # turn off fan
self._fan(False)
elif c == 'M111': # enable debug
logging_config.debug_enable()
elif c == 'M114': # get current position
hal.join()
p = self.position()
answer = "X:{} Y:{} Z:{} E:{}".format(p.x, p.y, p.z, p.e)
elif c == 'M117': # display a message
hal.set_message("TEST")
elif c == 'M300': # play sound normaly or control z axis
logging.debug("gcode = {}".format(gcode.get('S')))
if gcode.get('S') == 30:
self._pen(True)
elif gcode.get('S') == 50:
self._pen(False)
else:
raise GMachineException("Not supported, use M300 S30 or M300 S50")
elif c is None: # command not specified(ie just F was passed)
pass
# commands below are added just for compatibility
elif c == 'M82': # absolute mode for extruder
if not self._absoluteCoordinates:
raise GMachineException("Not supported, use G90/G91")
elif c == 'M83': # relative mode for extruder
if self._absoluteCoordinates:
raise GMachineException("Not supported, use G90/G91")
else:
raise GMachineException("unknown command")
# save parameters on success
self._velocity = velocity
logging.debug("position {}".format(self._position))
return answer